Cuban Refugee Center, Miami, FL USDHEW This American Latino Theme Study essay focuses on formal and informal efforts by various American Latino groups in the 19th and 20th centuries for full political and civic inclusion as citizens of the United States, including the development of Latino political activist groups, the struggle for civil rights, and the fight for full electoral rights for all citizens. by Louis DeSipio Over the past century and a half, diverse Latino communities have mobilized to demand civic and political inclusion, a process that has also facilitated the formation of a pan-ethnic political identity. Although there have been continuous gains, the quest for full and equal inclusion remains. The fact that the Latino population continues to grow in numbers and needs, and that this growth is often seen as a...
Get link
Facebook
X
Pinterest
Email
Other Apps
Let X Be a Continuous Random Variable With With the Following Distribution
Get link
Facebook
X
Pinterest
Email
Other Apps
4.1.4 Solved Problems: Continuous Random Variables
Problem
Let $X$ be a random variable with PDF given by \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} cx^2& \quad |x| \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}
Find the constant $c$.
Find $EX$ and Var$(X)$.
Find $P(X \geq \frac{1}{2})$.
Solution
To find $c$, we can use $\int_{-\infty}^{\infty} f_X(u)du=1$:
$1$
$=\int_{-\infty}^{\infty} f_X(u)du$
$= \int_{-1}^{1} cu^2du$
$= \frac{2}{3} c.$
Thus, we must have $c=\frac{3}{2}$.
To find $EX$, we can write
$EX$
$= \int_{-1}^{1} u f_X(u)du$
$= \frac{3}{2}\int_{-1}^{1} u^3 du$
$=0.$
In fact, we could have guessed $EX=0$ because the PDF is symmetric around $x=0$. To find Var$(X)$, we have
$\textrm{Var}(X)$
$=EX^2-(EX)^2=EX^2$
$= \int_{-1}^{1} u^2 f_X(u)du$
$= \frac{3}{2}\int_{-1}^{1} u^4 du$
$=\frac{3}{5}.$
To find $P(X \geq \frac{1}{2})$, we can write $$P(X \geq \frac{1}{2})=\frac{3}{2} \int_{\frac{1}{2}}^{1} x^2dx=\frac{7}{16}.$$
Problem
Let $X$ be a continuous random variable with PDF given by $$f_X(x)=\frac{1}{2}e^{-|x|}, \hspace{20pt} \textrm{for all }x \in \mathbb{R}.$$ If $Y=X^2$, find the CDF of $Y$.
Solution
First, we note that $R_Y=[0,\infty)$. For $y \in [0,\infty)$, we have
Let $X$ be a continuous random variable with PDF \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} x^2\left(2x+\frac{3}{2}\right) & \quad 0 < x \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation} If $Y=\frac{2}{X}+3$, find Var$(Y)$.
Solution
First, note that $$\textrm{Var}(Y)=\textrm{Var}\left(\frac{2}{X}+3\right)=4\textrm{Var}\left(\frac{1}{X}\right), \hspace{15pt} \textrm{using Equation 4.4}$$ Thus, it suffices to find Var$(\frac{1}{X})=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2$. Using LOTUS, we have $$E\left[\frac{1}{X}\right]=\int_{0}^{1} x\left(2x+\frac{3}{2}\right) dx =\frac{17}{12}$$ $$E\left[\frac{1}{X^2}\right]=\int_{0}^{1} \left(2x+\frac{3}{2}\right) dx =\frac{5}{2}.$$ Thus, Var$\left(\frac{1}{X}\right)=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2=\frac{71}{144}$. So, we obtain $$\textrm{Var}(Y)=4\textrm{Var}\left(\frac{1}{X}\right)=\frac{71}{36}.$$
Problem
Let $X$ be a positive continuous random variable. Prove that $EX=\int_{0}^{\infty} P(X \geq x) dx$.
Solution
We have $$P(X \geq x)=\int_{x}^{\infty}f_X(t)dt.$$ Thus, we need to show that $$\int_{0}^{\infty} \int_{x}^{\infty}f_X(t)dtdx=EX.$$ The left hand side is a double integral. In particular, it is the integral of $f_X(t)$ over the shaded region in Figure 4.4.
Fig.4.4 - The shaded area shows the region of the double integral of Problem 5. We can take the integral with respect to $x$ or $t$. Thus, we can write
$=\int_{0}^{\infty} tf_X(t) dt=EX \hspace{20pt} \textrm{since $X$ is a positive random variable}.$
Problem
Let $X \sim Uniform(-\frac{\pi}{2},\pi)$ and $Y=\sin(X)$. Find $f_Y(y)$.
Solution
Here $Y=g(X)$, where $g$ is a differentiable function. Although $g$ is not monotone, it can be divided to a finite number of regions in which it is monotone. Thus, we can use Equation 4.6. We note that since $R_X=[-\frac{\pi}{2},\pi]$, $R_Y=[-1,1]$. By looking at the plot of $g(x)=\sin(x)$ over $[-\frac{\pi}{2},\pi]$, we notice that for $y \in (0,1)$ there are two solutions to $y=g(x)$, while for $y \in (-1,0)$, there is only one solution. In particular, if $y \in (0,1)$, we have two solutions: $x_1=\arcsin(y)$, and $x_2=\pi-\arcsin(y)$. If $y \in (-1,0)$ we have one solution, $x_1=\arcsin(y)$. Thus, for $y \in(-1,0)$, we have
Cuban Refugee Center, Miami, FL USDHEW This American Latino Theme Study essay focuses on formal and informal efforts by various American Latino groups in the 19th and 20th centuries for full political and civic inclusion as citizens of the United States, including the development of Latino political activist groups, the struggle for civil rights, and the fight for full electoral rights for all citizens. by Louis DeSipio Over the past century and a half, diverse Latino communities have mobilized to demand civic and political inclusion, a process that has also facilitated the formation of a pan-ethnic political identity. Although there have been continuous gains, the quest for full and equal inclusion remains. The fact that the Latino population continues to grow in numbers and needs, and that this growth is often seen as a...
Corona Regeln Nrw / Diese Corona-Regeln gelten ab Montag in NRW - Das land nrw hat die coronaschutzverordnung (coronaschvo) umfangreich angepasst. . Jeder bürger in nrw kann bald einen schüler in nrw müssen sich aufgrund der pandemie ständig auf neue regeln einstellen. Termine im impfzentrum jetzt für alle buchbar. Die regelt unter anderem, welche bestimmungen zu proben oder auftritten und konzerten für blasinstrumente und orchester gelten. Informieren sie sich hier über neue regeln, maßnahmen, verordnungen und tipps. Die kinos in nrw sollen am 1 corona im hsk: Das virus breite sich schnell und. In kreisen und städten mit einer inzidenz bis. Informieren sie sich hier über neue regeln, maßnahmen, verordnungen und tipps. Nun gibt es auch in nrw eine neue corona & schule: Im wiederholungsfall werden bis zu 25.000 euro fällig. Stufenplan für den Schulbetrieb in Corona-Zeiten ... from www....
Andreas Gabalier : Andreas Gabalier Wax Statue Madame Tussaud S Museum Vienna Editorial Photo Image Of Schlager Tussauds 139020596 / Andreas gabalier is appearing in tucson, green bay, chula vista, boise, kansas city, irving, ft. . Where to get andreas gabalier tickets for the upcoming tour or concert? Andreas gabalier zodiac sign is a scorpio. Join facebook to connect with andreas gabalier and others you may know. Explore {{searchview.params.phrase}} by color family {{familycolorbuttontext(colorfamily.name)}} austrian singer andreas gabalier poses during a portrait session on may 13, 2015 in berchtesgaden, germany. verse d wenn die obersteirer kumman dann tscheppat da goarn a wei a jedes madl mechat mit an obersteirer foan d a d hollari hollaro hollari hollaro wei ma echte obersteirer san d wenn die obersteirer kraxln tuan die andern dich dahaxln a ja wie sies net verstehn auf an gipfl aufi zgehn d a d hollari hollaro hollari hollaro wei ma echte obersteirer san chorus g jo so sa...
Comments
Post a Comment