Cuban Refugee Center, Miami, FL USDHEW This American Latino Theme Study essay focuses on formal and informal efforts by various American Latino groups in the 19th and 20th centuries for full political and civic inclusion as citizens of the United States, including the development of Latino political activist groups, the struggle for civil rights, and the fight for full electoral rights for all citizens. by Louis DeSipio Over the past century and a half, diverse Latino communities have mobilized to demand civic and political inclusion, a process that has also facilitated the formation of a pan-ethnic political identity. Although there have been continuous gains, the quest for full and equal inclusion remains. The fact that the Latino population continues to grow in numbers and needs, and that this growth is often seen as a...
Get link
Facebook
X
Pinterest
Email
Other Apps
Let X Be a Continuous Random Variable With With the Following Distribution
Get link
Facebook
X
Pinterest
Email
Other Apps
4.1.4 Solved Problems: Continuous Random Variables
Problem
Let $X$ be a random variable with PDF given by \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} cx^2& \quad |x| \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation}
Find the constant $c$.
Find $EX$ and Var$(X)$.
Find $P(X \geq \frac{1}{2})$.
Solution
To find $c$, we can use $\int_{-\infty}^{\infty} f_X(u)du=1$:
$1$
$=\int_{-\infty}^{\infty} f_X(u)du$
$= \int_{-1}^{1} cu^2du$
$= \frac{2}{3} c.$
Thus, we must have $c=\frac{3}{2}$.
To find $EX$, we can write
$EX$
$= \int_{-1}^{1} u f_X(u)du$
$= \frac{3}{2}\int_{-1}^{1} u^3 du$
$=0.$
In fact, we could have guessed $EX=0$ because the PDF is symmetric around $x=0$. To find Var$(X)$, we have
$\textrm{Var}(X)$
$=EX^2-(EX)^2=EX^2$
$= \int_{-1}^{1} u^2 f_X(u)du$
$= \frac{3}{2}\int_{-1}^{1} u^4 du$
$=\frac{3}{5}.$
To find $P(X \geq \frac{1}{2})$, we can write $$P(X \geq \frac{1}{2})=\frac{3}{2} \int_{\frac{1}{2}}^{1} x^2dx=\frac{7}{16}.$$
Problem
Let $X$ be a continuous random variable with PDF given by $$f_X(x)=\frac{1}{2}e^{-|x|}, \hspace{20pt} \textrm{for all }x \in \mathbb{R}.$$ If $Y=X^2$, find the CDF of $Y$.
Solution
First, we note that $R_Y=[0,\infty)$. For $y \in [0,\infty)$, we have
Let $X$ be a continuous random variable with PDF \begin{equation} \nonumber f_X(x) = \left\{ \begin{array}{l l} x^2\left(2x+\frac{3}{2}\right) & \quad 0 < x \leq 1\\ 0 & \quad \text{otherwise} \end{array} \right. \end{equation} If $Y=\frac{2}{X}+3$, find Var$(Y)$.
Solution
First, note that $$\textrm{Var}(Y)=\textrm{Var}\left(\frac{2}{X}+3\right)=4\textrm{Var}\left(\frac{1}{X}\right), \hspace{15pt} \textrm{using Equation 4.4}$$ Thus, it suffices to find Var$(\frac{1}{X})=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2$. Using LOTUS, we have $$E\left[\frac{1}{X}\right]=\int_{0}^{1} x\left(2x+\frac{3}{2}\right) dx =\frac{17}{12}$$ $$E\left[\frac{1}{X^2}\right]=\int_{0}^{1} \left(2x+\frac{3}{2}\right) dx =\frac{5}{2}.$$ Thus, Var$\left(\frac{1}{X}\right)=E[\frac{1}{X^2}]-(E[\frac{1}{X}])^2=\frac{71}{144}$. So, we obtain $$\textrm{Var}(Y)=4\textrm{Var}\left(\frac{1}{X}\right)=\frac{71}{36}.$$
Problem
Let $X$ be a positive continuous random variable. Prove that $EX=\int_{0}^{\infty} P(X \geq x) dx$.
Solution
We have $$P(X \geq x)=\int_{x}^{\infty}f_X(t)dt.$$ Thus, we need to show that $$\int_{0}^{\infty} \int_{x}^{\infty}f_X(t)dtdx=EX.$$ The left hand side is a double integral. In particular, it is the integral of $f_X(t)$ over the shaded region in Figure 4.4.
Fig.4.4 - The shaded area shows the region of the double integral of Problem 5. We can take the integral with respect to $x$ or $t$. Thus, we can write
$=\int_{0}^{\infty} tf_X(t) dt=EX \hspace{20pt} \textrm{since $X$ is a positive random variable}.$
Problem
Let $X \sim Uniform(-\frac{\pi}{2},\pi)$ and $Y=\sin(X)$. Find $f_Y(y)$.
Solution
Here $Y=g(X)$, where $g$ is a differentiable function. Although $g$ is not monotone, it can be divided to a finite number of regions in which it is monotone. Thus, we can use Equation 4.6. We note that since $R_X=[-\frac{\pi}{2},\pi]$, $R_Y=[-1,1]$. By looking at the plot of $g(x)=\sin(x)$ over $[-\frac{\pi}{2},\pi]$, we notice that for $y \in (0,1)$ there are two solutions to $y=g(x)$, while for $y \in (-1,0)$, there is only one solution. In particular, if $y \in (0,1)$, we have two solutions: $x_1=\arcsin(y)$, and $x_2=\pi-\arcsin(y)$. If $y \in (-1,0)$ we have one solution, $x_1=\arcsin(y)$. Thus, for $y \in(-1,0)$, we have
Cuban Refugee Center, Miami, FL USDHEW This American Latino Theme Study essay focuses on formal and informal efforts by various American Latino groups in the 19th and 20th centuries for full political and civic inclusion as citizens of the United States, including the development of Latino political activist groups, the struggle for civil rights, and the fight for full electoral rights for all citizens. by Louis DeSipio Over the past century and a half, diverse Latino communities have mobilized to demand civic and political inclusion, a process that has also facilitated the formation of a pan-ethnic political identity. Although there have been continuous gains, the quest for full and equal inclusion remains. The fact that the Latino population continues to grow in numbers and needs, and that this growth is often seen as a...
Барселона Атлетико Мадрид : «Барселона» - «Атлетико» Мадрид. Прогноз и ставки на матч ... : Локомотив м 0:0 динамо м. . Чемпионат испании | 35 тур. Локомотив м 0:0 динамо м. Прямая трансляция 8 мая 2021г. Локомотив м 0:0 динамо м. Чемпионат испании | 35 тур. Прямая трансляция 8 мая 2021г. Атлетико Мадрид - Барселона 24 ноември bet365 | 365 ... from 365prognozi.com Локомотив м 0:0 динамо м. Чемпионат испании | 35 тур. Прямая трансляция 8 мая 2021г. Чемпионат испании | 35 тур. Чемпионат испании | 35 тур. Прямая трансляция 8 мая 2021г. Локомотив м 0:0 динамо м. Прямая трансляция 8 мая 2021г. Чемпионат испании | 35 тур. Локомотив м 0:0 динамо м. Барселона - Атлетико Мадрид (2-0) | Фотогалерея | ФК Барселона from www.barcelonafc.ru ...
Index Of Persiangig / Index of /image . • djlelenc.persiangig.com receives approximately 100.6k visitors and 256,496 page impressions per day. Contribute to persiangig/prod development by creating an account on github. سایت فارسی بیبیسی تازهترین اخبار و گزارش ها درباره ایران و افغانستان و جهان در حوزه سیاست، اقتصاد، جامعه و فرهنگ و همچنین ویدیو، گزارشهای تصویری و برنامههای تلویزیون. We analyzed majidrf.persiangig.com page load time and found that the first response time was 93 ms and then it took 378 ms to load all. Peciv.persiangig has the lowest google pagerank and bad results in terms of yandex topical citation index. سایت فارسی بیبیسی تازهترین اخبار و گزارش ها درباره ایران و افغانستان و جهان در حوزه سیاست، اقتصاد، جامعه و فرهنگ و همچنین ویدیو، گزارشهای تصویری و برنامههای تلویزیون. Learn more about persiangig employee benefits, their tech stack and more. Moreover, dsdde persiangig is slightly inactive on social media. Persiangig.com rating in top 5 count...
Comments
Post a Comment